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ABSTRACT 

A structure attached to a rigid foundation sub-

jected to ground motion undergoes components of rigid 

body motion as well as elastic deformations. Viscous 

damping may be defined as a function of total, elas-

tic, or rigid body velocity. It is shown that damp-

ing proportional to elastic velocity is a form of 

proper damping and properly defined leads to classi-

cal modes, that damping proportional to rigid body 

velocity is not proper damping and inputs energy to 

the system, and that damping proportional to total 

velocity is made up of parts of the other two. Rota- #, _, 

tional components of the rigid base motion cause non- 

linear input terms. Derivation of the equations of 

motion with transfer matrices to directly account for 

the base motion are given. An example is given of 

a framed building subjected to stochastic base 

motion of six components showing some of the effects 

of rigid body damping and rotational base motion. 
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INTRODUCTION 

A structure subjected to ground motions, such 

as a building on a volume compensated mat foundation, 

may be modeled as an elastic assembly with discrete 

masses attached to a rigid foundation. Seismic waves 

encountering the rigid base cause its motion, which 

is described in translational and rotational compon-

ents of a convenient coordinate center, usually the 

centroid. Response of each mass point of the struc-

ture consists of rigid body and elastic parts where 

the rigid body displacement, velocity and accelera-

tion are functions of the base motion. 

Viscous damping is defineable in several ways, 

but it is shown that damping proportional to the 

elastic velocity and the total velocity must conform 

to the criteria of proper damping for classical modes 

to exist. Damping proportional to the rigid body 

velocity, however, need not conform and, in fact, is 

not proper damping but modifies the forcing function. 

The forcing term is a complex function of the rigid 

body displacements, velocities, and accelerations 

transferred to each mass point. Physically, damping 

mechanisms relative to the base are responsible for 
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elastic damping, but damping mechanisms relative to 

the fixed world contain elastic and rigid body parts. 

Thus, the rigid body part may arise. 

A method of calculation of response is included 

as well as problem examples. An artificial earth-

quake was generated in six stochastic components of 

motion for displacement, velocity, and acceleration. 

The example problem serves to illustrate the analysis 

as well as some effects of the rotational components 

of base motion and rigid body damping. 



EQUATIONS OF MOTION 

The controlling equations of motion for an elas-

tic structure modeled as a discrete system attached 

to a rigid base are 

[1] [M]{T} {c} [K]{X} = {0} 

where the total linear displacement {XT} is the sum 
N 

of rigid body components {XR} and elastic components 
N 

{X} 
N 

[2]  {NT}  = {X } + {X} 
N 

Thus, each mass point has up to three orthogonal 

linear kinematic degrees of freedom defined for a 

structural total of N. The velocity and acceleration 

corresponding to each degree of freedom are likewise 

linear combinations. 

{X } = {XR} + {X} 

{XT} = {R}
{X} 

The matrix [M] is an array of the mass values at each 

mass point which may be defined by allocation result- 



ing in a diagonal matrix or may contain mass coupling 

coefficients if determined by influence considera-

tions. The structural stiffness is denoted by 

matrix [K] such that the coefficient k..ij  is the 

force at i due to a unit displacement at j with all 

other displacements zero and i and j correspond to 

kinematic degrees of freedom 1 through N. The damp-

ing force vector {C} is shown as a dissipative force. 

The base motion is defined at its centroid most 

conveniently as the vector {Xc} as shown in Fig. 1 
6' 

and its derivatives of velocity {X,-.} and accelera- 
6' 

tion {X C}. These vectors have six components, three 

time, and in the case of earth motions, are due to 

seismic waves. The resulting motion {Xc}, which is 

nonanalytic or stochastic, may be written in two 

parts; {XD} for linear displacement, and {X
°
} for the 

3 3 
rotational components. 

The rigid body displacements at mass point p, 

which has up to 3 linear kinematic degrees of free-

dom, are related to the base displacement by the 

transfer matrix [T1]p such that 

[4] {Xd
p 
 = [I]fXD1 + [Ti]p{Xe} 

3 3x3 3 3x3 3 

6 
linear and three rotational, which are functions of 



where 
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-rz
0 r  

r  -rx 
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[ 5 ] [T1]p = 

p 

The vector R with components r , r and r 
P xp yp zp 

locates mass point p as shown in Fig. 1 where 

[6] R2 = r2 + r2 + r2 p xp yp Zp 

Since the rotational components of base motion {Xe} 

are related to the linear displacements at mass 

point p, successive differentiations for velocity 

and acceleration at p generate nonlinear terms even 

though small rotations are assumed such that 

sin Xei  + 0 and cos Xei  - Xei. Thus, the rigid 

body velocity and acceleration at p are respectively 

[7] IkR/P =  "115(0+ [T
1
]p{C(0

} 
 - [T2]13"85(0/  

3 3x3 3 3x3 3 3x3 3 

[8] 6CR/p = En604.[Tl]p60-3(05(26/-[T2]p{X010+4
} 

 
3 3x3 3 3x3 3 3x3 3 
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{XeXo}T= 
[X015(61 ' 5(0202 X03Xe3]  

[9] 

[10a] 
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where 

[10b] {K _
x ky rk  _x  i2 k  _ x  5(2 

0 6 0 61 61 61 , 62 62 62 , 

- x k2  
63 63 63 

ix K r y 4.;12 [10c] X X +X2  
0 6' 11̀ 6161 J‘61 ' 02 62 62 ' 

'2 
Xe3

X
e3

+X63
] 

Expanding Eqs. 4, 7 and 8 to include all N kinematic 

degrees of freedom they may be written 

[11a] {XR} = [T]{XD1 + [T1]{X0) 

N Nx3 3 Nx3 3 

[11b]  = [Mil)/ [T1]{5(6/ - [T2]{X66}  
N Nx3 3 Nx3 3 Nx3 3 \ 

[11c] {X
R  }= M{X }+[Ti  ]{1e -Xee  i2}-[T2 

 1{X
6  X6 

 +5(2
0
) 

D  
N Nx3 3 Nx3 3 Nx3 3 

where the [T] are N/3 partitioned identity matrices 

as are the transfer matrices [T1] and [T2]. Thus 



the rigid body motions are completely determined 

when all components of the base displacement, velo-

city, and acceleration are known. 
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DAMPING 

Damping dissipates energy from the system thus 

attenuating amplitude. For analytic convenience and 

because of generally satisfactory results in compari-

son to measurement, forms of viscous damping are 

widely utilized in structural dynamics including 

earthquake engineering. Thus, the damping force in 

Eq. 1 may for complete generality be assumed in the 

form ti 

[12] {C} = [CF]150 [CR]{5Y+ [CT]d(9111 

where the matrices [C.] are coefficients of viscous 

damping proportional to elastic velocities, rigid 

body velocities, and total velocities, respectively. 

Substituting Eq. 12 into Eq. 1 yields alternate 

form of the equation of motion 

[13a] [M]{XT}+[C]{XT}+[K]{XT}=[K]{XR}+([C]-[C']){5CR} 

[13b] [M]{X}+[C]{X}+[K]{X}=  -[M]{kR}-[C']{*R} 

in which 

[14a] [C] = [CF] + [CT] 



[C'] = [CR] + [CT] 

[C] - [C'] = [CE] - [CR] 

In either form, the proper viscous damping term [C] 

is shown to be a linear combination of elastic and 

total damping coefficients as defined in Eq. 12. 

It is also seen that damping may input energy 

to the system. In Eq. 13b by defining [CE] only as 

nonzero, that is letting [C']=[0], it can be seen 

that the damping does not input energy to the system 

as effects elastic displacements. 

For classical modes to exist, it has been shown 

(Caughey 1960) that the damping matrix must be trans-

formable to an orthogonal form by the same operators 

which uncouple the mass and stiffness matrices. Thus 

the matrix [C] and therefore [Cr] and[CT] must be of 

the same form. One such sufficient form (Caughey 

1960; Saul, Tantichaiboriboon and Jayachandran 1974) 

consists of a combination of the mass and stiffness 

matrices 

m-1 
[15] [C] = [M] E ai.[M-1K]i 

i=0 

wherethecoefficientsa.must be determined. If m 



eigenvectors {0}i  where m N and m frequencies wi  

are determined for the undamped free vibration and 1 

written as a matrix of m vectors [q] and a diagonal 

r 2 Nxm 
matrix lw ] respectively the relationships 

mxm 

[(pi T [o] = IM*] 

[0]T EK1[0] = Pew2i 

are the orthogonality relationships or uncoupling 

operators. 

Therefore, 

[17] [0]T[C][0] = r2EwM*j 

must exist for classical modes to exist where Ei  are 

the fraction of critical damping in each mode. If 1/4 

the fraction of critical damping is specified in 

only r modes where r < m, the remainder may be 

calculated from 

, r 2j-2 
[18] = E a. co. wi j=1  3-1 1 

wherethecoefficientsa.in Eqs. 15 and 18 are 

found from 



[19] [A]{a} = {2 w} 
rxr 

in which the 

[20]A
1J 

= c2j-2 = 1,2,... ,r 

By specification of the fraction of critical 

damping in a limited number of modes and calculation 

or contrivance to get the coefficients ai, various 

well known models (Saul, Tantichaiboriboon and Jaya-

chandran 1974) for damping are obtained. Thus Ray-

leigh damping,a0  and al  only are nonzero, consists 

of a linear combination of absolute and relative 

damping represented by viscous dampers connecting 

each mass to the base and to each other respectively. 

Taking more terms in the series of Eq. 15 results 

in models not as easily conceptualized. 

The damping matrix [CR] is not involved in the 

eigenvalue problem and thus does not have to conform 

to the restraints on [C] for classical modes to 

exist. 



SOLUTION OF EQUATION OF MOTION 

Either of the field equations, Eq. 13a and h, 

may be used. Equation 13a yields the total dis-

placement {XT} and so a further step is required to 

determine the elastic displacement from Eqs. 2 and 

lla 

[21] {X}= {XT} - [T] {XD} - [T1]{Xe} 

In addition, the right hand side of Eq. 13a is of 

simpler form involving only displacement and velo-

city components of the base motion {Xc}. Equation 

13b yields the elastic response directly, but the 

right hand side is more complex and involves all 

components of the base motion. Initial conditions 

from Eq. 13a involve rigid body motion plus elastic; 

Eq. 13h only elastic. The initial conditions may be 

specified by 

[22a]  {X(t=0)} = {X0} , {X(t=0)} = {X0} 

[22b]  {XT(t=0)} = {X0} + [T]{XD0} + [T1]{X00} 

[22c]  
{XT(t=0)} ="0}4.[T]{XD0/4.[T1]{3(00}-{T2]"80i00} 



In the following, Eq. 13b is solved but Eq. 13a may 

be easily substituted. 

By assuming the displacement to be a linear 

combination of displacements in m modes it may be 

written 

[23] {X} = [0]{2} 
N Nxm m 

Substituting Eq. 23 into Eq. 13b and premultiplying 

by [cH T  yields 

F. 
[24]  Z. +

2 + W.Z. = * f.(t) 
M. 

where the orthogonality relationships of Eqs. 16 and 

17 uncouple the differential equation, Fi  is a 

coefficient, fi(t) the nondimensionalized function 

of time, and 

[25] {Ff(t)} = PP] 
Tqini{Kolgc t if io) 

or if the right hand side of Eq. 13b is designated 

{F'(t)} the components of {Ff(t)} are 

m 
[26] Fifi(t) = E (1)..P .(t) 

j=1 )1 



The initial conditions in the uncoupled coor- 

dinates are 

[27a]  
-1 

{Z0}=
4 T[M]{X0 } 

m mxm mxn nxn n 

[27b] rm-j [(pi
T 
 rm,{x0} 

and the solution may be written 

[28] Zi(t) = e 1 1  
Z +.w.Z 
01 1 1 01  sinwdit+Z01  .coswdit wdi 

  

-.w.(t-t') 

fi
"e  1 1 sinwdi(t-t')dt' 

where 

[29]  

  

]

2 
wdi = wi 1 i 

Ifitisassumedthatf.1(t) is linear over short 

intervals of time, i.e., piecewise linear, a closed 

form of solution may be written (Saul, Tantichaibori-

boon and Jayachandran 1974) for Zi(t). Approximat-

ing f(t) as a quadratic form enables increased 

accuracy in the numerical solution. 

If the solution of the equations of motion by 

numerical integration is preferred, the damping 



matrices may he directly calculated once the Ci  are 

determined from 

[30] [C] = [M] Pid 1 2  WT[M] 
M*  

nxn nxn nxm mxn mxn nxn 



EXAMPLE PROBLEM 

The six correlated components of base motion 

for displacement, velocity and acceleration were 

generated by simulating an artificial earthquake 

from an acceleration energy spectrum Sa[w] (Housner 

and Jennings 1964) 

[31] Safw] - 

2 
c(1  + w  147.8)  

2 2 2 
(1+63 w  

242 147.8, 

where c = 0.01238 ft2/sec3(11.5 cm2/sec3), by using 

fast Fourier transforms. Weak correlation was 

achieved using statistical data from measured trans-

lational ground motion (Chen 1975) of earthquakes. 

The artificial earthquake was treated as a multi-

dimensional nonstationary stochastic process by 

specifying a deterministic envelope function conform-

ing to recorded earthquakes (Jennings, et. al. 1968). 

A 2-story single bay frame building on a 

cellular foundation was dynamically analyzed as an 

eight degree of freedom system due to rigid body mo-

tion of the base. The building, Fig. 2., is regular 

and has 2 axes of symmetry. Sidesway degrees of 



freedom only were chosen, since there is a discern-

able gap in the natural frequencies above the first 

8 (1.26 Hz - 8.14 Hz). The stiffness and mass 

matrices are given in Table 1 along with the eigen-

vectors and frequencies. The center of gravity of 

the cellular foundation is not coincident with the 

center of symmetry of the structure, as seen in Fig. 

2. The structure was subjected to a 10 sec. artifi-

cial earthquake with 1.=0, 0.75, & 1.5 and E
2  = 0, 

0.375, & 0.75 respectively being specified for 

proper (elastic) damping. Rigid body damping was 

varied to check its effect on the forcing function 

and on the response of the structure. In addition, 

the rotational components of the base motion were 

suppressed to ascertain their effect on the response 

and on the forcing function. A typical response 

curve is given in Fig. 3 and Fig. 4 shows a sample 

of the forcing function {F'(t)}. 



CONCLUSIONS 

The equations of motion for a structure attached 

to a rigid foundation undergoing linear {XD} and 

rotational {X0} movements due to earthquake have a 

forcing function, from Eqs. 13b, llb and llc, contain-

ing nonlinear terms as well as a form of damping 

[32]{F'(t)}=-[M] ([r]{RD}4-[Ti ]{X e-X e 5C 2e}-[T2 ]{X e3C o+i2e
}) 

-[C']([1]{5CD}4.[Ti ]{k e}- [T2 ] {x eie}) 

The xei  terms are not necessarily insignificant. 

Although usually smaller in magnitude than the linear 

terms and reduced further as cross products or 

squares when multiplied by a transfer matrix they 

may become comparable. The damping [C'] results only 

when the damping mechanism is conceptualized as 

being attached to the fixed world. When [C'] is of 

significant magnitude, it can provide energy to 

{F'(t)} comparable to the mass coupling term. If 

all damping is modeled as being relative to the base 

only proper damping results and [C'] becomes zero. 

For classical modes to exist, the form of proper 

damping is given in Eq. 17. Although the fractions 



of critical damping may be assigned to a limited 

number of modes and calculated for the remainder 

assigning values of for all modes, either equal 

or decreasing in higher modes appears to be as reas-

onable. 

Numerical solution of the equations of motion 

by superposition of modes or direct integration is 

possible. Either way determination of a damping 

matrix may be needed as given by Eq. 30. Superposi-

tion of modes enables limiting the calculation to 

significantly contributing modes only. 

The example problem showed that small changes 

of rigid body damping had slight effect on response 

and that elastic damping, which is to be expected, 

had much greater effect. 

Both rigid body and elastic damping could be 

combined to yield total damping. The effects of 

rotational components of the base motion must be 

considered with rigid body damping since it is their 

product which can add energy to the system. 
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Table 1 Properties of Example Structure 

Property i 1 2 3 4 5 6 7 8 

1 5.325 -0.847 -1.288 1.288 -4.496 -0.001 -0.018 0.018 

2 5.325 1.288 -1.288 -0.001 -4.496 0.018 -0.018 

3 40.923 -1.951 -0.011 0.011 -41.290 -0.018 

[K] 4 40.922 0.011 -0.011 -0.018 -41.290 

(kips/in) 5 11.881 -0.874 -1.294 1.294 

6 11.881 1.294 -1.294 

7 73.553 -1.937 

8 73.551 

[M] 

(k-s2/in) 0.0317 0.0317 0.0317 0.0317 0.0453 0.0453 0.0453 0.0453 



Table 1 (cont.) 

Period t i (s) 0.795 0.643 0.362 0.351 0.330 0.304 0.125 0.123 

Frequency f i  1.258 1.555 2.761 2.851 3.030 3.285 7.974 8.137 
(Hz) 

1 -3.181 -3.319 0.888 -2.204 2.181 0.090 0.000 0.000 

2 3.181 -3.319 0.888 2.204 2.181 -0.090 0.000 0.000 

3 -0.695 0.000 -2.908 -0.274 -0.000 -2.600 2.574 -3.023 

[a] 4 0.696 0.000 2.907 0.274 -0.000 2.599 2.575 -3.024 

5 -1.843 -1.824 +0.239 +2.753 -2.776 -0.065 0.000 0.000 

6 -1.843 -1.824 -0.239 -2.753 -2.776 0.065 0.000 0.000 

7 -0.472 0.000 -2.124 -0.072 0.000 2.510 2.529 -2.154 

8 0.472 0.000 2.124 0.072 -0.000 2.509 -2.530 -2.154 
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Fig.1 Components of Motion Defined at Centroid 

of Base Cand at a Typical Mass Point ID. 
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Fig. 2a Dynamic Degrees of Freedom of Frame 

Used in Example Problem 
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Fig.2b Elevation of 2-Story Building Frame 
Showing Rigid Base 

20' 

Fig. 2c Plan of Structure in Example 

Problem 
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Fig. 3 Typical Displacement Response of 

Structure due to Artificial Earthquake 
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Fig. 4 Artificial Earthquake Generated 

Forcing Function Component 


